完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPeng, Guan-Haoen_US
dc.contributor.authorLo, Ping-Yuanen_US
dc.contributor.authorLi, Wei-Huaen_US
dc.contributor.authorHuang, Yan-Chenen_US
dc.contributor.authorChen, Yan-Hongen_US
dc.contributor.authorLee, Chi-Hsuanen_US
dc.contributor.authorYang, Chih-Kaien_US
dc.contributor.authorCheng, Shun-Jenen_US
dc.date.accessioned2019-06-03T01:08:33Z-
dc.date.available2019-06-03T01:08:33Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acs.nanolett.8b04786en_US
dc.identifier.urihttp://hdl.handle.net/11536/151924-
dc.description.abstractWith both spin and valley degrees of freedom, the low-lying excitonic spectra of photoexcited transition-metal dichalcogenide monolayers (TMDC-MLs) are featured by rich fine structures, comprising the intravalley bright exciton states as well as various intra- and intervalley dark ones. The latter states can be classified as those of the spin- and momentum-forbidden dark excitons according to the violated optical selection rules. Because of their optical invisibility, these two types of the dark states are in principle hardly observed and even distinguished in conventional spectroscopies although their impacts on the optical and dynamical properties of TMDC-MLs have been well noticed. In this Letter, we present a theoretical and computational investigation of the exciton fine structures and the temperature-dependent photoluminescence spectra of strained tungsten diselenide monolayers (WSe2-MLs) where the intravalley spin-forbidden dark exciton lies in the lowest exciton states and other momentum-forbidden states are in the higher energies that are tunable by external stress. The numerical computations are carried out by solving the Bethe-Salpeter equation for an exciton in a WSe2-ML under the stress-control in the tight-binding scheme established from the first principle computation in the density functional theory. According to the numerical computation and supportive model analysis, we reveal the distinctive signatures of the spin- and momentum-forbidden exciton states of strained WSe2-MLs in the temperature-dependent photoluminescences and present the guiding principle to infer the relative energetic locations of the two types of dark excitons.en_US
dc.language.isoen_USen_US
dc.subjectTwo-dimensional materialsen_US
dc.subjecttransition-metal dichalcogenideen_US
dc.subjectdark excitonen_US
dc.subjectWSe2en_US
dc.subjecttemperature-dependent photoluminescenceen_US
dc.subjectstrainen_US
dc.titleDistinctive Signatures of the Spin- and Momentum-Forbidden Dark Exciton States in the Photoluminescence of Strained WSe2 Monolayers under Thermalizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acs.nanolett.8b04786en_US
dc.identifier.journalNANO LETTERSen_US
dc.citation.volume19en_US
dc.citation.issue4en_US
dc.citation.spage2299en_US
dc.citation.epage2312en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000464769100014en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文