Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Hsin-Yuan | en_US |
dc.date.accessioned | 2019-06-03T01:08:38Z | - |
dc.date.available | 2019-06-03T01:08:38Z | - |
dc.date.issued | 2019-06-01 | en_US |
dc.identifier.issn | 0944-2669 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00526-019-1534-z | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/151996 | - |
dc.description.abstract | We consider the following Liouville system on a parallelogram Omega in R-2: Delta u(i) + Sigma(n)(j=1) a(ij)rho(j) (h(j)e(uj)/integral(Omega)h(j)e(u)j - 1/vertical bar Omega vertical bar) = 0, i is an element of I = {1,..., n}, (0.1) where h(i) (x) is an element of C-3(Omega), h(i) (x) > 0, ui is doubly periodic on partial derivative Omega (i is an element of I), and A = (a(ij)) nxn is a non-negative constant matrix. We prove that if q is a non-degenerate critical point of Sigma n i= 1. * i log hi (x) and A satisfies certain conditions stated in Theorem 1.1, (0.1) has a sequence of fully bubbling solutions which blow up at p, as. = (.1,...,.n).. * = (. * 1,...,. * n), where. * satisfies 8p Sigma n i= 1. * i = Sigma n i= 1 Sigma nj = 1 ai j. * i. * j and Sigma n i= 1 ai j. * i. * j > 6p for j is an element of I. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Existence of bubbling solutions for the Liouville system in a torus | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00526-019-1534-z | en_US |
dc.identifier.journal | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS | en_US |
dc.citation.volume | 58 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000467902300001 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |