Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Hsin-Yuanen_US
dc.date.accessioned2019-06-03T01:08:38Z-
dc.date.available2019-06-03T01:08:38Z-
dc.date.issued2019-06-01en_US
dc.identifier.issn0944-2669en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00526-019-1534-zen_US
dc.identifier.urihttp://hdl.handle.net/11536/151996-
dc.description.abstractWe consider the following Liouville system on a parallelogram Omega in R-2: Delta u(i) + Sigma(n)(j=1) a(ij)rho(j) (h(j)e(uj)/integral(Omega)h(j)e(u)j - 1/vertical bar Omega vertical bar) = 0, i is an element of I = {1,..., n}, (0.1) where h(i) (x) is an element of C-3(Omega), h(i) (x) > 0, ui is doubly periodic on partial derivative Omega (i is an element of I), and A = (a(ij)) nxn is a non-negative constant matrix. We prove that if q is a non-degenerate critical point of Sigma n i= 1. * i log hi (x) and A satisfies certain conditions stated in Theorem 1.1, (0.1) has a sequence of fully bubbling solutions which blow up at p, as. = (.1,...,.n).. * = (. * 1,...,. * n), where. * satisfies 8p Sigma n i= 1. * i = Sigma n i= 1 Sigma nj = 1 ai j. * i. * j and Sigma n i= 1 ai j. * i. * j > 6p for j is an element of I.en_US
dc.language.isoen_USen_US
dc.titleExistence of bubbling solutions for the Liouville system in a torusen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00526-019-1534-zen_US
dc.identifier.journalCALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONSen_US
dc.citation.volume58en_US
dc.citation.issue3en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000467902300001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles