Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, S. L.en_US
dc.contributor.authorHuang, W. C.en_US
dc.contributor.authorKo, C. T.en_US
dc.contributor.authorChen, K. N.en_US
dc.date.accessioned2014-12-08T15:21:23Z-
dc.date.available2014-12-08T15:21:23Z-
dc.date.issued2012-02-01en_US
dc.identifier.issn0026-2714en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.microrel.2011.05.008en_US
dc.identifier.urihttp://hdl.handle.net/11536/15220-
dc.description.abstractProcess optimization of BCB polymer to silicon oxide bonding was investigated. The suitable bonding temperature is about 300 degrees C, while bond failure of BCB-to-oxide bonding is observed starting from 400 degrees C. Bonding interface morphologies and bond strengths of BCB-to-oxide bonding were investigated as well. PECVD oxide to BCB bonding has better bonding quality than that of thermal oxide to BCB bonding. Si-O-Si bonds may be the reason of a strong BCB to oxide bonding. Water molecules link BCB and oxide surfaces during the initial contact, while Si-O-Si bonds are formed during bonding. This proposed mechanism of BCB-to-oxide bonding provides a guideline for polymer to oxide hybrid bonding technology in 3D integration. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleBCB-to-oxide bonding technology for 3D integrationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.microrel.2011.05.008en_US
dc.identifier.journalMICROELECTRONICS RELIABILITYen_US
dc.citation.volume52en_US
dc.citation.issue2en_US
dc.citation.spage352en_US
dc.citation.epage355en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000300190600009-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000300190600009.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.