完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Tin-Chih Tolyen_US
dc.contributor.authorLin, Chi-Weien_US
dc.date.accessioned2019-08-02T02:18:33Z-
dc.date.available2019-08-02T02:18:33Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cie.2018.07.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/152361-
dc.description.abstractExisting yield learning models do not separate the effects of different learning sources or consider the interactions among the sources. To address this problem, a multisource-with-interaction yield learning model was developed. In this paper, the properties of this multisource yield learning model are discussed from a theoretical and practical standpoint. In this study, the proposed methodology was applied to the manufacturing process of a dynamic random access memory product. The proposed model exhibited improved accuracy in estimating the future yield, evidencing its superiority over existing yield learning models. The proposed methodology can be generalized to model the learning processes of other performance measures in manufacturing or service systems.en_US
dc.language.isoen_USen_US
dc.subjectYielden_US
dc.subjectLearning sourceen_US
dc.subjectSemiconductoren_US
dc.subjectInteractionen_US
dc.subjectArtificial neural networken_US
dc.titleAn innovative yield learning model considering multiple learning sources and learning source interactionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cie.2018.07.002en_US
dc.identifier.journalCOMPUTERS & INDUSTRIAL ENGINEERINGen_US
dc.citation.volume131en_US
dc.citation.spage455en_US
dc.citation.epage463en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000468710600036en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文