Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, Wei-Lien_US
dc.contributor.authorYu, Cheng-Yuen_US
dc.contributor.authorZhang, Jun-Linen_US
dc.contributor.authorLuo, Guang-Lien_US
dc.contributor.authorChien, Chao-Hsinen_US
dc.date.accessioned2019-08-02T02:18:35Z-
dc.date.available2019-08-02T02:18:35Z-
dc.date.issued2019-05-01en_US
dc.identifier.issn0741-3106en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LED.2019.2905139en_US
dc.identifier.urihttp://hdl.handle.net/11536/152392-
dc.description.abstractWe fabricated HfO2-based gate stacks on epi-Si0.5Ge0.5 substrates and investigated the effect of thermal treatment on their structural and electrical properties at varying temperatures and pressures in oxygen ambient. The thermal treatment process led to severe degradation of interface quality as the temperature increased. Material analyses indicated that annealing in oxygen ambient resulted in oxygen diffusion from the high-k material to the SiGe surface, causing undesirable SiGe reoxidation. In high-vacuum annealing, an interface state density of approximately 1.4 x 10(11) eV(-1) cm(-2) and a thermal stability of up to 500 degrees C were achieved for the gate stack on SiGe.en_US
dc.language.isoen_USen_US
dc.subjectSiGe channelen_US
dc.subjectinterface passivationen_US
dc.subjecthigh-vacuum annealing (HVA)en_US
dc.titleImproving Interface State Density and Thermal Stability of High-kappa Gate Stack Through High-Vacuum Annealing on Si0.5Ge0.5en_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LED.2019.2905139en_US
dc.identifier.journalIEEE ELECTRON DEVICE LETTERSen_US
dc.citation.volume40en_US
dc.citation.issue5en_US
dc.citation.spage678en_US
dc.citation.epage681en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000466190700004en_US
dc.citation.woscount0en_US
Appears in Collections:Articles