Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Meng-Fuen_US
dc.contributor.authorJiang, Jieen_US
dc.contributor.authorShao, Pao-Wenen_US
dc.contributor.authorLai, Yu-Hongen_US
dc.contributor.authorChen, Jhih-Weien_US
dc.contributor.authorHo, Sheng-Zhuen_US
dc.contributor.authorChen, Yi-Chunen_US
dc.contributor.authorTsai, Din-Pingen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.date.accessioned2019-09-02T07:46:18Z-
dc.date.available2019-09-02T07:46:18Z-
dc.date.issued2019-07-24en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.9b06332en_US
dc.identifier.urihttp://hdl.handle.net/11536/152686-
dc.description.abstractWith the rise of Internet of Things, the presence of flexible devices has attracted significant attention owing to design flexibility. A ferroelectric field-effect transistor (FeFET), showing the advantages of high speed, nondestructive readout, and low-power consumption, plays a key role in next-generation technology. However, the performance of these devices is restricted since conventional flexible substrates show poor thermal stability to integrate traditional ferroelectric materials, limiting the compatibility of wearable devices. In this study, we adopt flexible muscovite mica as a substrate due to its good thermal properties and epitaxial integration ability. A flexible FeFET composed of oxide heteroepitaxy on muscovite is realized by combining an aluminum-doped zinc oxide film as the semiconductor channel layer and a Pb(Zro7Ti0.3)03 film as the ferroelectric gate dielectric. The excellent characteristics of the transistor together with superior thermal stability and mechanical flexibility are demonstrated through various mechanical bending and temperature measurements. The on/off current ratio of the FeFET is higher than 103, which based on the field effect in the transfer curve. The smallest bending radius that can be achieved is 5 mm with a cyclability of 300 times and a retention of 100 h. This study opens an avenue to use oxide heteroepitaxy to construct a FeFET for next-generation flexible electronic systems.en_US
dc.language.isoen_USen_US
dc.subjectheteroepitaxyen_US
dc.subjectflexibleen_US
dc.subjectferroelectric transistoren_US
dc.subjectmuscoviteen_US
dc.subjectPZTen_US
dc.titleOxide Heteroepitaxy-Based Flexible Ferroelectric Transistoren_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.9b06332en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume11en_US
dc.citation.issue29en_US
dc.citation.spage25882en_US
dc.citation.epage25890en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000477787200026en_US
dc.citation.woscount0en_US
Appears in Collections:Articles