完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tsai, Meng-Fu | en_US |
dc.contributor.author | Jiang, Jie | en_US |
dc.contributor.author | Shao, Pao-Wen | en_US |
dc.contributor.author | Lai, Yu-Hong | en_US |
dc.contributor.author | Chen, Jhih-Wei | en_US |
dc.contributor.author | Ho, Sheng-Zhu | en_US |
dc.contributor.author | Chen, Yi-Chun | en_US |
dc.contributor.author | Tsai, Din-Ping | en_US |
dc.contributor.author | Chu, Ying-Hao | en_US |
dc.date.accessioned | 2019-09-02T07:46:18Z | - |
dc.date.available | 2019-09-02T07:46:18Z | - |
dc.date.issued | 2019-07-24 | en_US |
dc.identifier.issn | 1944-8244 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1021/acsami.9b06332 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/152686 | - |
dc.description.abstract | With the rise of Internet of Things, the presence of flexible devices has attracted significant attention owing to design flexibility. A ferroelectric field-effect transistor (FeFET), showing the advantages of high speed, nondestructive readout, and low-power consumption, plays a key role in next-generation technology. However, the performance of these devices is restricted since conventional flexible substrates show poor thermal stability to integrate traditional ferroelectric materials, limiting the compatibility of wearable devices. In this study, we adopt flexible muscovite mica as a substrate due to its good thermal properties and epitaxial integration ability. A flexible FeFET composed of oxide heteroepitaxy on muscovite is realized by combining an aluminum-doped zinc oxide film as the semiconductor channel layer and a Pb(Zro7Ti0.3)03 film as the ferroelectric gate dielectric. The excellent characteristics of the transistor together with superior thermal stability and mechanical flexibility are demonstrated through various mechanical bending and temperature measurements. The on/off current ratio of the FeFET is higher than 103, which based on the field effect in the transfer curve. The smallest bending radius that can be achieved is 5 mm with a cyclability of 300 times and a retention of 100 h. This study opens an avenue to use oxide heteroepitaxy to construct a FeFET for next-generation flexible electronic systems. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | heteroepitaxy | en_US |
dc.subject | flexible | en_US |
dc.subject | ferroelectric transistor | en_US |
dc.subject | muscovite | en_US |
dc.subject | PZT | en_US |
dc.title | Oxide Heteroepitaxy-Based Flexible Ferroelectric Transistor | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1021/acsami.9b06332 | en_US |
dc.identifier.journal | ACS APPLIED MATERIALS & INTERFACES | en_US |
dc.citation.volume | 11 | en_US |
dc.citation.issue | 29 | en_US |
dc.citation.spage | 25882 | en_US |
dc.citation.epage | 25890 | en_US |
dc.contributor.department | 交大名義發表 | zh_TW |
dc.contributor.department | 材料科學與工程學系 | zh_TW |
dc.contributor.department | National Chiao Tung University | en_US |
dc.contributor.department | Department of Materials Science and Engineering | en_US |
dc.identifier.wosnumber | WOS:000477787200026 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |