標題: | Contact Engineering High-Performance n-Type MoTe2 Transistors |
作者: | Mleczko, Michal J. Yu, Andrew C. Smyth, Christopher M. Chen, Victoria Shin, Yong Cheol Chatterjee, Sukti Tsai, Yi-Chia Nishi, Yoshio Wallace, Robert M. Pop, Eric 電機工程學系 Department of Electrical and Computer Engineering |
關鍵字: | Two-dimensional materials;unipolar transport;metal-insulator-semiconductor contacts;silver;scandium;X-ray photoelectron spectroscopy;MoTe2;hexagonal boron nitride |
公開日期: | 1-九月-2019 |
摘要: | Semiconducting MoTe2 is one of the few two-dimensional (2D) materials with a moderate band gap, similar to silicon. However, this material remains underexplored for 2D electronics due to ambient instability and predominantly p-type Fermi level pinning at contacts. Here, we demonstrate unipolar n-type MoTe2 transistors with the highest performance to date, including high saturation current (>400 mu A/mu m at 80 K and >200 mu A/mu m at 300 K) and relatively low contact resistance (1.2 to 2 k Omega.mu m from 80 to 300 K), achieved with Ag contacts and AlOx encapsulation. We also investigate other contact metals (Sc, Ti, Cr, Au, Ni, Pt), extracting their Schottky barrier heights using an analytic subthreshold model. High-resolution X-ray photoelectron spectroscopy reveals that interfacial metal-Te compounds dominate the contact resistance. Among the metals studied, Sc has the lowest work function but is the most reactive, which we counter by inserting monolayer hexagonal boron nitride between MoTe2 and Sc. These metal-insulator-semiconductor (MIS) contacts partly depin the metal Fermi level and lead to the smallest Schottky barrier for electron injection. Overall, this work improves our understanding of n-type contacts to 2D materials, an important advance for low-power electronics. |
URI: | http://dx.doi.org/10.1021/acs.nanolett.9b02497 http://hdl.handle.net/11536/152794 |
ISSN: | 1530-6984 |
DOI: | 10.1021/acs.nanolett.9b02497 |
期刊: | NANO LETTERS |
Volume: | 19 |
Issue: | 9 |
起始頁: | 6352 |
結束頁: | 6362 |
顯示於類別: | 期刊論文 |