完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChandrasekaran, Sridharen_US
dc.contributor.authorSimanjuntak, Firman Mangasaen_US
dc.contributor.authorSaminathan, R.en_US
dc.contributor.authorPanda, Debashisen_US
dc.contributor.authorTseng, Tseung-Yuenen_US
dc.date.accessioned2019-10-05T00:08:41Z-
dc.date.available2019-10-05T00:08:41Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn0957-4484en_US
dc.identifier.urihttp://dx.doi.org/10.1088/1361-6528/ab3480en_US
dc.identifier.urihttp://hdl.handle.net/11536/152807-
dc.description.abstractArtificial synapse having good linearity is crucial to achieve an efficient learning process in neuromorphic computing. It is found that the synaptic linearity can be enhanced by engineering the doping region across the switching layer. The nonlinearity of potentiation and depression of the pure device is 36% and 91%, respectively; meanwhile, the nonlinearity after doping can be suppressed to be 22% (potentiation) and 60% (depression). Henceforth, the learning accuracy of the doped device is 91% with only 13 iterations; meanwhile, the pure device is 78%. A detailed conduction mechanism to understand this phenomenon is proposed.en_US
dc.language.isoen_USen_US
dc.subjectartificial synapticen_US
dc.subjectneuromorphicen_US
dc.subjectresistive switchingen_US
dc.subjectmemristoren_US
dc.titleImproving linearity by introducing Al in HfO2 as a memristor synapse deviceen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1361-6528/ab3480en_US
dc.identifier.journalNANOTECHNOLOGYen_US
dc.citation.volume30en_US
dc.citation.issue44en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000482010300003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文