完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Cheng-Hsuanen_US
dc.contributor.authorHo, Hsin-Huaen_US
dc.contributor.authorLiu, Yu-Lungen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.contributor.authorKuo, Bor-Chenen_US
dc.contributor.authorTaur, Jin-Shiuhen_US
dc.date.accessioned2014-12-08T15:21:30Z-
dc.date.available2014-12-08T15:21:30Z-
dc.date.issued2012-01-01en_US
dc.identifier.issn1016-2364en_US
dc.identifier.urihttp://hdl.handle.net/11536/15288-
dc.description.abstractSoft-margin support vector machine (SVM) is one of the most powerful techniques for supervised classification. However, the performances of SVMs are based on choosing the proper kernel functions or proper parameters of a kernel function. It is extremely time consuming by applying the k-fold cross-validation (CV) to choose the almost best parameter. Nevertheless, the searching range and fineness of the grid method should be determined in advance. In this paper, an automatic method for selecting the parameter of the normalized kernel function is proposed. In the experimental results, it costs very little time than k-fold cross-validation for selecting the parameter by our proposed method. Moreover, the corresponding soft-margin SVMs can obtain more accurate or at least equal performance than the soft-margin SVMs by applying k-fold cross-validation to determine the parameters.en_US
dc.language.isoen_USen_US
dc.subjectsoft-margin support vector machineen_US
dc.subjectSVMen_US
dc.subjectkernel methoden_US
dc.subjectoptimal kernelen_US
dc.subjectnormalized kernelen_US
dc.subjectk-fold cross-validationen_US
dc.titleAn Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machinesen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF INFORMATION SCIENCE AND ENGINEERINGen_US
dc.citation.volume28en_US
dc.citation.issue1en_US
dc.citation.spage1en_US
dc.citation.epage15en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000299446100002-
dc.citation.woscount10-
顯示於類別:期刊論文


文件中的檔案:

  1. 000299446100002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。