標題: An Automatic Method for Selecting the Parameter of the Normalized Kernel Function to Support Vector Machines
作者: Li, Cheng-Hsuan
Ho, Hsin-Hua
Liu, Yu-Lung
Lin, Chin-Teng
Kuo, Bor-Chen
Taur, Jin-Shiuh
電控工程研究所
Institute of Electrical and Control Engineering
關鍵字: soft-margin support vector machine;SVM;kernel method;optimal kernel;normalized kernel;k-fold cross-validation
公開日期: 1-一月-2012
摘要: Soft-margin support vector machine (SVM) is one of the most powerful techniques for supervised classification. However, the performances of SVMs are based on choosing the proper kernel functions or proper parameters of a kernel function. It is extremely time consuming by applying the k-fold cross-validation (CV) to choose the almost best parameter. Nevertheless, the searching range and fineness of the grid method should be determined in advance. In this paper, an automatic method for selecting the parameter of the normalized kernel function is proposed. In the experimental results, it costs very little time than k-fold cross-validation for selecting the parameter by our proposed method. Moreover, the corresponding soft-margin SVMs can obtain more accurate or at least equal performance than the soft-margin SVMs by applying k-fold cross-validation to determine the parameters.
URI: http://hdl.handle.net/11536/15288
ISSN: 1016-2364
期刊: JOURNAL OF INFORMATION SCIENCE AND ENGINEERING
Volume: 28
Issue: 1
起始頁: 1
結束頁: 15
顯示於類別:期刊論文


文件中的檔案:

  1. 000299446100002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。