完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Po-Shengen_US
dc.contributor.authorShen, Chin-Hanen_US
dc.contributor.authorHsiao, Hsu-Fengen_US
dc.date.accessioned2019-10-05T00:09:46Z-
dc.date.available2019-10-05T00:09:46Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0397-6en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/152957-
dc.description.abstractWe have proposed a multi-contextual model architecture with color and depth information considered independently in this work. To utilize the feature maps of different levels better, short connection structures are used to integrate the knowledge from color and depth data separately. A novel loss function considering three criteria is proposed to improve the detection accuracy and spatial coherence of the detected results. The training process of the proposed network is divided into two stages, a pre-training phase and a refinement phase to increase the efficiency of the network.en_US
dc.language.isoen_USen_US
dc.subjectSaliency detectionen_US
dc.subjectdeep learningen_US
dc.subjectmulti-contextual modelen_US
dc.titleSaliency Detection with Multi-Contextual Models and Spatially Coherent Loss Functionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000483076401056en_US
dc.citation.woscount0en_US
顯示於類別:會議論文