標題: A structure preserving flow for computing Hamiltonian matrix exponential
作者: Kuo, Yueh-Cheng
Lin, Wen-Wei
Shieh, Shih-Feng
應用數學系
Department of Applied Mathematics
公開日期: 1-Nov-2019
摘要: This article focuses on computing Hamiltonian matrix exponential. Given a Hamiltonian matrix H, it is well-known that the matrix exponential e(H) is a symplectic matrix and its eigenvalues form reciprocal (lambda, 1/(lambda) over bar). It is important to take care of the symplectic structure for computing e(H). Based on the structure-preserving flow proposed by Kuo et al. (SIAM J Matrix Anal Appl 37:976-1001, 2016), we develop a numerical method for computing the symplectic matrix pair (M, L) which represents e(H).
URI: http://dx.doi.org/10.1007/s00211-019-01065-3
http://hdl.handle.net/11536/153040
ISSN: 0029-599X
DOI: 10.1007/s00211-019-01065-3
期刊: NUMERISCHE MATHEMATIK
Volume: 143
Issue: 3
起始頁: 555
結束頁: 582
Appears in Collections:Articles