標題: | Intelligent Image De-Blurring for Imaging Flow Cytometry |
作者: | Zhang, Fangzheng Lei, Cheng Huang, Chun-Jung Kobayashi, Hirofumi Sun, Chia-Wei Goda, Keisuke 光電工程學系 Department of Photonics |
關鍵字: | Imaging flow cytometry;image de-blurring;machine learning;optofluidic time-stretch microscopy |
公開日期: | 1-五月-2019 |
摘要: | By virtue of the combined merits of optical microscopy and flow cytometry, imaging flow cytometry is a powerful tool for rapid, high-content analysis of single cells in large heterogeneous populations. However, its efficiency (defined by the ratio of the number of clearly imaged cells to the total cell population) is not high (typically 50-80%), due to out-of-focus image blurring caused by imperfect fluidic focusing of cells, a common drawback that not only reduces the number of cell images useable for high-content analysis but also increases the probability of false events and missed rare cells. To address this challenge and expand the efficacy of imaging flow cytometry, here, we propose and demonstrate intelligent deblurring of out-of-focus cell images in imaging flow cytometry. Specifically, by using our machine learning algorithms, we show an 11% increase in variance and a 95% increase in first-order gradient summation of cell images taken with an optofluidic time-stretch microscope. Without strict hardware requirements, our intelligent de-blurring method provides a promising solution to the out-of-focus blurring problem of imaging flow cytometers and holds promise for significantly improving their performance. (C) 2019 International Society for Advancement of Cytometry |
URI: | http://dx.doi.org/10.1002/cyto.a.23771 http://hdl.handle.net/11536/153137 |
ISSN: | 1552-4922 |
DOI: | 10.1002/cyto.a.23771 |
期刊: | CYTOMETRY PART A |
Volume: | 95A |
Issue: | 5 |
起始頁: | 549 |
結束頁: | 554 |
顯示於類別: | 期刊論文 |