Full metadata record
DC FieldValueLanguage
dc.contributor.authorChern, Hua-Huaien_US
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorHwang, Hsien-Kueien_US
dc.date.accessioned2019-12-13T01:12:22Z-
dc.date.available2019-12-13T01:12:22Z-
dc.date.issued2007-05-01en_US
dc.identifier.issn1549-6325en_US
dc.identifier.urihttp://dx.doi.org/10.1145/1240233.1240235en_US
dc.identifier.urihttp://hdl.handle.net/11536/153230-
dc.description.abstractWe show that a wide class of linear cost measures (such as the number of leaves) in random d-dimensional point quadtrees undergo a change in limit laws: If the dimension d = 1, ..., 8, then the limit law is normal; if d >= 9 then there is no convergence to a fixed limit law. Stronger approximation results such as convergence rates and local limit theorems are also derived for the number of leaves, additional phase changes being unveiled. Our approach is new and very general, and also applicable to other classes of search trees. A brief discussion of Devroye's grid trees (covering m-ary search trees and quadtrees as special cases) is given. We also propose an efficient numerical procedure for computing the constants involved to high precision.en_US
dc.language.isoen_USen_US
dc.subjectAsymptotic transferen_US
dc.subjectanalysis in distribution of algorithmsen_US
dc.subjectcentral limit theoremsen_US
dc.subjectdepthen_US
dc.subjectdifferential equationsen_US
dc.subjectgrid treesen_US
dc.subjectlocal limit theoremsen_US
dc.subjectMellin transformsen_US
dc.subjectpage usageen_US
dc.subjectphase transitionsen_US
dc.subjectquadtreesen_US
dc.subjecttotal path lengthen_US
dc.titlePhase Changes in Random Point Quadtreesen_US
dc.typeArticleen_US
dc.identifier.doi10.1145/1240233.1240235en_US
dc.identifier.journalACM TRANSACTIONS ON ALGORITHMSen_US
dc.citation.volume3en_US
dc.citation.issue2en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000494447000002en_US
dc.citation.woscount6en_US
Appears in Collections:Articles