Full metadata record
DC FieldValueLanguage
dc.contributor.authorTai, Kuo-Lunen_US
dc.contributor.authorHuang, Chun-Weien_US
dc.contributor.authorCai, Ren-Fongen_US
dc.contributor.authorHuang, Guan-Minen_US
dc.contributor.authorTseng, Yi-Tangen_US
dc.contributor.authorChen, Junen_US
dc.contributor.authorWu, Wen-Weien_US
dc.date.accessioned2020-01-02T00:04:18Z-
dc.date.available2020-01-02T00:04:18Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn1613-6810en_US
dc.identifier.urihttp://dx.doi.org/10.1002/smll.201905516en_US
dc.identifier.urihttp://hdl.handle.net/11536/153359-
dc.description.abstractLayered MoS2 is a prospective candidate for use in energy harvesting, valleytronics, and nanoelectronics. Its properties strongly related to its stacking configuration and the number of layers. Due to its atomically thin nature, understanding the atomic-level and structural modifications of 2D transition metal dichalcogenides is still underdeveloped, particularly the spatial control and selective precision. Therefore, the development of nanofabrication techniques is essential. Here, an atomic-scale approach used to sculpt 2D few-layer MoS2 into lateral heterojunctions via in situ scanning/transmission electron microscopy (STEM/TEM) is developed. The dynamic evolution is tracked using ultrafast and high-resolution filming equipment. The assembly behaviors inherent to few-layer 2D-materials are observed during the process and included the following: scrolling, folding, etching, and restructuring. Atomic resolution STEM is employed to identify the layer variation and stacking sequence for this new 2D-architecture. Subsequent energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy analyses are performed to corroborate the elemental distribution. This sculpting technique that is established allows for the formation of sub-10 nm features, produces diverse nanostructures, and preserves the crystallinity of the material. The lateral heterointerfaces created in this study also pave the way for the design of quantum-relevant geometries, flexible optoelectronics, and energy storage devices.en_US
dc.language.isoen_USen_US
dc.subjectatomic-scaleen_US
dc.subjectfew-layer MoS2en_US
dc.subjectheterojunctionsen_US
dc.subjectin situ scanningen_US
dc.subjecttransmission electron microscopy (STEMen_US
dc.subjectTEM)en_US
dc.subjectnanofabricationsen_US
dc.titleAtomic-Scale Fabrication of In-Plane Heterojunctions of Few-Layer MoS2 via In Situ Scanning Transmission Electron Microscopyen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/smll.201905516en_US
dc.identifier.journalSMALLen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000501933200001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles