Full metadata record
DC FieldValueLanguage
dc.contributor.authorYuang, Mariaen_US
dc.contributor.authorTien, Po-Lungen_US
dc.contributor.authorRuan, Wei-Zhangen_US
dc.contributor.authorLin, Tien-Chienen_US
dc.contributor.authorWen, Shao-Chunen_US
dc.contributor.authorTseng, Po-Jenen_US
dc.contributor.authorLin, Che-Changen_US
dc.contributor.authorChen, Ching-Nienen_US
dc.contributor.authorChen, Chun-Tingen_US
dc.contributor.authorLuo, Yi-Anen_US
dc.contributor.authorTsai, Meng-Ruen_US
dc.contributor.authorZhong, Shanen_US
dc.date.accessioned2020-01-02T00:04:21Z-
dc.date.available2020-01-02T00:04:21Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn1943-0620en_US
dc.identifier.urihttp://dx.doi.org/10.1364/JOCN.12.000A28en_US
dc.identifier.urihttp://hdl.handle.net/11536/153394-
dc.description.abstractAn edge data center (EDC) network infrastructure is required to flexibly deliver massive bandwidth and ultralow latency for a 5G edge cloud. Existing electrical-switching-based infrastructure, however, has been shown incapable of meeting such requirements. In this paper, we present an EDC network architecture and prototype testbed, referred to as the intelligence-defined optical tunnel network system (OPTUNS). OPTUNS consists of a set of optical switching subsystems that operate collectively to facilitate packet transport through logical wavelength-based optical tunnels. These optical tunnels are governed by a software-defined-networking-based intelligent tunnel control system, in a proactive manner. As such, optical tunnels are always made available whenever needed. In essence, OPTUNS boasts several crucial features, including high scalability, massive wavelength reuse (yielding high bandwidth), proactive optical tunnel control (yielding ultralow latency), and fault tolerance. We have built an OPTUNS testbed, including 30 optical switching subsystem prototypes, that interconnect a total of 25 racks (400 servers). Benchmarking results show that OPTUNS achieves 82.6% power saving compared with electrical spine-leaf networks. Further, our NetPipe-based experimental results show that OPTUNS invariably achieves mean and p99 end-to-end latencies of less than 17 mu s, regardless of traffic load and locality. (C) 2019 Optical Society of Americaen_US
dc.language.isoen_USen_US
dc.titleOPTUNS: Optical intra-data center network architecture and prototype testbed for a 5G edge cloud [Invited]en_US
dc.typeArticleen_US
dc.identifier.doi10.1364/JOCN.12.000A28en_US
dc.identifier.journalJOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKINGen_US
dc.citation.volume12en_US
dc.citation.issue1en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000498047500004en_US
dc.citation.woscount0en_US
Appears in Collections:Articles