Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Hsiu-Wenen_US
dc.contributor.authorChen, Tsung-Linen_US
dc.contributor.authorTien, Chung-Haoen_US
dc.date.accessioned2020-02-02T23:54:26Z-
dc.date.available2020-02-02T23:54:26Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn1017-9909en_US
dc.identifier.urihttp://dx.doi.org/10.1117/1.JEI.28.6.063011en_US
dc.identifier.urihttp://hdl.handle.net/11536/153480-
dc.description.abstractWe proposed a vision-based methodology as an aid for an unmanned aerial vehicle (UAV) landing on a previously unsurveyed area. When the UAV was commanded to perform a landing mission in an unknown airfield, the learning procedure was activated to extract the surface features for learning the obstacle appearance. After the learning process, while hovering the UAV above the potential landing spot, the vision system would be able to predict the roughness value for confidence in a safe landing. Finally, using hybrid optical flow technology for motion estimation, we successfully carried out the UAV landing without a predefined target. Our work combines a well-equipped flight control system with the proposed vision system to yield more practical versatility for UAV applications. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.en_US
dc.language.isoen_USen_US
dc.subjectoptical flowen_US
dc.subjectself-supervised learningen_US
dc.subjectunmanned aerial vehicleen_US
dc.subjectvision-based landingen_US
dc.titleLearning-based risk assessment and motion estimation by vision for unmanned aerial vehicle landing in an unvisited areaen_US
dc.typeArticleen_US
dc.identifier.doi10.1117/1.JEI.28.6.063011en_US
dc.identifier.journalJOURNAL OF ELECTRONIC IMAGINGen_US
dc.citation.volume28en_US
dc.citation.issue6en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000505570400011en_US
dc.citation.woscount0en_US
Appears in Collections:Articles