Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Ankiten_US
dc.contributor.authorSu, Guan-Mingen_US
dc.contributor.authorChang, Chau-Shingen_US
dc.contributor.authorYeh, Ching-Chenen_US
dc.contributor.authorWu, Bi-Yien_US
dc.contributor.authorPatel, Dinesh K.en_US
dc.contributor.authorFan, Yen-Tingen_US
dc.contributor.authorLin, Sheng-Dien_US
dc.contributor.authorChow, Leeen_US
dc.contributor.authorLiang, Chi-Teen_US
dc.date.accessioned2020-02-02T23:54:27Z-
dc.date.available2020-02-02T23:54:27Z-
dc.date.issued2019-12-27en_US
dc.identifier.issn1687-4110en_US
dc.identifier.urihttp://dx.doi.org/10.1155/2019/6376529en_US
dc.identifier.urihttp://hdl.handle.net/11536/153492-
dc.description.abstractWe have performed detailed transport measurements on a 3nm thick (as-grown) Al film on GaAs prepared by molecular beam epitaxy (MBE). Such an epitaxial film grown on a GaAs substrate shows the Berezinskii-Kosterlitz-Thouless (BKT) transition, a topological transition in two dimensions. Our experimental data shows that the MBE-grown Al nanofilm is an ideal system for probing interesting physical phenomena such as the BKT transition and superconductivity. The increased superconductor transition temperature (similar to 2.4K) compared to that of bulk Al (1.2K), together with the ultrathin film quality, may be advantageous for future superconductor-based quantum devices and quantum information technology.en_US
dc.language.isoen_USen_US
dc.titleTopological Transition in a 3nm Thick Al Film Grown by Molecular Beam Epitaxyen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2019/6376529en_US
dc.identifier.journalJOURNAL OF NANOMATERIALSen_US
dc.citation.volume2019en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000505957300001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles