Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Kuan-Changen_US
dc.contributor.authorTsai, Tsung-Mingen_US
dc.contributor.authorChang, Ting-Changen_US
dc.contributor.authorSyu, Yong-Enen_US
dc.contributor.authorWang, Chia-C.en_US
dc.contributor.authorChuang, Siang-Lanen_US
dc.contributor.authorLi, Cheng-Huaen_US
dc.contributor.authorGan, Der-Shinen_US
dc.contributor.authorSze, Simon M.en_US
dc.date.accessioned2014-12-08T15:21:35Z-
dc.date.available2014-12-08T15:21:35Z-
dc.date.issued2011-12-26en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.3671991en_US
dc.identifier.urihttp://hdl.handle.net/11536/15351-
dc.description.abstractIn the study, we reduced the operation current of resistance random access memory (RRAM) by supercritical CO(2) (SCCO(2)) fluids treatment. The power consumption and joule heating degradation of RRAM device can be improved greatly by SCCO(2) treatment. The defect of nickel-doped silicon oxide (Ni:SiO(x)) was passivated effectively by the supercritical fluid technology. The current conduction of high resistant state in post-treated Ni:SiO(x) film was transferred to Schottky emission from Frenkel-Pool due to the passivation effect. Additionally, we can demonstrate the passivation mechanism of SCCO(2) for Ni:SiO(x) by material analyses of x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671991]en_US
dc.language.isoen_USen_US
dc.titleReducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO(2) fluid treatmenten_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.3671991en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume99en_US
dc.citation.issue26en_US
dc.citation.spageen_US
dc.citation.epageen_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
Appears in Collections:Articles