Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, WRen_US
dc.date.accessioned2014-12-08T15:02:56Z-
dc.date.available2014-12-08T15:02:56Z-
dc.date.issued1996-01-01en_US
dc.identifier.issn0018-9251en_US
dc.identifier.urihttp://dx.doi.org/10.1109/7.481248en_US
dc.identifier.urihttp://hdl.handle.net/11536/1535-
dc.description.abstractIf the non-Gaussian distribution function of radar glint noise is known, the Masreliez filter can be applied to improve target tracking performance. We investigate the glint identification problem using the maximum likelihood (ML) method. Two models for the glint distribution are used, a mixture of two Gaussian distributions and a mixture of a Gaussian and a Laplacian distribution An efficient initial estimate method based on the QQ-plot is also proposed. Simulations show that the ML estimates converge to truths.en_US
dc.language.isoen_USen_US
dc.titleMaximum likelihood identification of glint noiseen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/7.481248en_US
dc.identifier.journalIEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMSen_US
dc.citation.volume32en_US
dc.citation.issue1en_US
dc.citation.spage41en_US
dc.citation.epage51en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:A1996TQ35200005-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. A1996TQ35200005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.