Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWang, Kuo-Zhongen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2020-02-02T23:54:40Z-
dc.date.available2020-02-02T23:54:40Z-
dc.date.issued2019-12-01en_US
dc.identifier.issn1846-3886en_US
dc.identifier.urihttp://dx.doi.org/10.7153/oam-2019-13-72en_US
dc.identifier.urihttp://hdl.handle.net/11536/153615-
dc.description.abstractFor an n-by-n complex matrix A, we consider conditions on A for which the operator norms parallel to A(k)parallel to (resp., numerical radii w(A(k))), k >= 1, of powers of A are constant. Among other results, we show that the existence of a unit vector x in C-n satisfying vertical bar < A(k)x,x >vertical bar = w(A(k)) = w(A) for 1 <= k <= 4 is equivalent to the unitary similarity of A to a direct sum lambda B circle plus C, where vertical bar lambda vertical bar = 1, B is ideinpotent, and C satisfies w(C-k) <= w(B) for 1 <= k <= 4. This is no longer the case for the norm: there is a 3-by-3 matrix A with parallel to A(k)x parallel to = parallel to A(k)parallel to = root 2 for some unit vector x and for all k >= 1, but without any nontrivial direct summand. Nor is it true for constant numerical radii without a common attaining vector. If A is invertible, then the constancy of parallel to A(k)parallel to (resp., w(A(k))) for k = +/- 1, +/- 2, ... is equivalent to A being unitary. This is not true for invertible operators on an infinite-dimensional Hilbert space.en_US
dc.language.isoen_USen_US
dc.subjectOperator normen_US
dc.subjectnumerical radiusen_US
dc.subjectidempotent matrixen_US
dc.subjectirreducible matrixen_US
dc.titleCONSTANT NORMS AND NUMERICAL RADII OF MATRIX POWERSen_US
dc.typeArticleen_US
dc.identifier.doi10.7153/oam-2019-13-72en_US
dc.identifier.journalOPERATORS AND MATRICESen_US
dc.citation.volume13en_US
dc.citation.issue4en_US
dc.citation.spage1035en_US
dc.citation.epage1054en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000503449800009en_US
dc.citation.woscount0en_US
Appears in Collections:Articles