完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Yun-Tingen_US
dc.contributor.authorWu, Kai-Chiangen_US
dc.contributor.authorChou, Chung-Hanen_US
dc.contributor.authorChang, Shih-Chiehen_US
dc.date.accessioned2020-02-02T23:55:34Z-
dc.date.available2020-02-02T23:55:34Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-4503-6007-4en_US
dc.identifier.urihttp://dx.doi.org/10.1145/3287624.3287687en_US
dc.identifier.urihttp://hdl.handle.net/11536/153676-
dc.description.abstractConcerns exist that the reliability of chips is worsening because of downscaling technology. Among various reliability challenges, device aging is a dominant concern because it degrades circuit performance over time. Traditionally, runtime monitoring approaches are proposed to estimate aging effects. However, such techniques tend to predict and monitor delay degradation status for circuit mitigation measures rather than the health condition of the chip. In this paper, we propose an aging-aware chip health prediction methodology that adapts to workload conditions and process, supply voltage, and temperature variations. Our prediction methodology adopts an innovative on-chip delay monitoring strategy by tracing representative aging-aware delay behavior. The delay behavior is then fed into a machine learning engine to predict the age of the tested chips. Experimental results indicate that our strategy can obtain 97.40% accuracy with 4.14% area overhead on average. To the authors' knowledge, this is the first method that accurately predicts current chip age and provides information regarding future chip health.en_US
dc.language.isoen_USen_US
dc.subjectAgingen_US
dc.subjectbias-temperature instabilityen_US
dc.subjectchip health predictionen_US
dc.subjectprocessen_US
dc.subjectvoltageen_US
dc.subjectand temperature (PVT) variationen_US
dc.subjectsupport vector machine (SVM)en_US
dc.subjectworkloaden_US
dc.titleAging-aware Chip Health Prediction Adopting an Innovative Monitoring Strategyen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/3287624.3287687en_US
dc.identifier.journal24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019)en_US
dc.citation.spage179en_US
dc.citation.epage184en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000507459700037en_US
dc.citation.woscount0en_US
顯示於類別:會議論文