完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chieh-Yuen_US
dc.contributor.authorLai, Wenzeen_US
dc.contributor.authorHsieh, Hsin-Yingen_US
dc.contributor.authorZheng, Wen-Haoen_US
dc.contributor.authorWang, Yu-Shuenen_US
dc.contributor.authorChuang, Jung-Hongen_US
dc.date.accessioned2020-03-02T03:23:54Z-
dc.date.available2020-03-02T03:23:54Z-
dc.date.issued2018-01-01en_US
dc.identifier.isbn978-1-4503-5665-7en_US
dc.identifier.urihttp://dx.doi.org/10.1145/3240508.3240670en_US
dc.identifier.urihttp://hdl.handle.net/11536/153840-
dc.description.abstractIn this paper, we present a method to generate realistic defensive plays in a basketball game based on the ball and the offensive team's movements. Our system allows players and coaches to simulate how the opposing team will react to a newly developed offensive strategy for evaluating its effectiveness. To achieve the aim, we train on the NBA dataset a conditional generative adversarial network that learns spatio-temporal interactions between players' movements. The network consists of two components: a generator that takes a latent noise vector and the offensive team's trajectories as input to generate defensive team's trajectories; and a discriminator that evaluates the realistic degree of the generated results. Since a basketball game can be easily identified as fake if the ball handler, who is not defended, does not shoot the ball or cut into the restricted area, we add the wide open penalty to the objective function to assist model training. To evaluate the results, we compared the similarity of the real and the generated defensive plays, in terms of the players' movement speed and acceleration, distance to defend ball handlers and non-ball handlers, and the frequency of wide open occurrences. In addition, we conducted a user study with 59 participants for subjective tests. Experimental results show the high fidelity of the generated defensive plays to real data and demonstrate the feasibility of our algorithm.en_US
dc.language.isoen_USen_US
dc.subjectConditional adversarial networken_US
dc.subjectbasketballen_US
dc.subjectdefensive strategiesen_US
dc.titleGenerating Defensive Plays in Basketball Gamesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/3240508.3240670en_US
dc.identifier.journalPROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18)en_US
dc.citation.spage1580en_US
dc.citation.epage1588en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000509665700197en_US
dc.citation.woscount1en_US
顯示於類別:會議論文