Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorAbdurrahman, Fajaren_US
dc.date.accessioned2020-05-05T00:01:55Z-
dc.date.available2020-05-05T00:01:55Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5386-9154-0en_US
dc.identifier.issn2153-6996en_US
dc.identifier.urihttp://hdl.handle.net/11536/153989-
dc.description.abstractIn a seismogram, there exist many kinds of wavelets. It can be classified into two classes. One class is normal; the other is abnormal. The abnormal may be the bright spot pattern caused from the gas sand zone. It has the properties of high amplitude and low frequency content in the wavelets. Perceptron is adopted to classify these 10 classes. Four different learning rules are used in the training of perceptron. Those are the fixed increment, normalized perceptron, fractional correction, and absolute correction rules. The experiments are in the simulated and real seismograms. For the comparison of four learning rules in the experiment of simulated seismogram, the absolute correction rule can get the fastest convergence. Then, it is applied to the real seismic data. The bright spot pattern can be detected. The result can improve the seismic interpretation.en_US
dc.language.isoen_USen_US
dc.subjectperceptronen_US
dc.subjectlearning ruleen_US
dc.subjectwaveleten_US
dc.subjectbright spoten_US
dc.subjectseismogramen_US
dc.titleSEISMIC SIGNAL CLASSIFICATION USING PERCEPTRON WITH DIFFERENT LEARNING RULESen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019)en_US
dc.citation.spage1410en_US
dc.citation.epage1413en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電機資訊國際碩士學位學程zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentEECS International Graduate Program-Masteren_US
dc.identifier.wosnumberWOS:000519270601162en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper