完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYao, Yun-Zhenen_US
dc.contributor.authorSu, Jian-Jiaen_US
dc.contributor.authorLi, Jie-Enen_US
dc.contributor.authorZhu, Zhi-Yuen_US
dc.contributor.authorTien, Chung-Haoen_US
dc.date.accessioned2020-05-05T00:02:00Z-
dc.date.available2020-05-05T00:02:00Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-5106-3112-0en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://dx.doi.org/10.1117/12.2542620en_US
dc.identifier.urihttp://hdl.handle.net/11536/154068-
dc.description.abstractAn approach for recovering the phase information from the detected intensity was proposed in this work. Unlike the conventional approach based on the Gerchberg-Saxton algorithm, the proposed approach recovered the phase information via an alternative technique in the realm of deep learning, the residual neural network. The database we utilized to train the network was collected by a Michelson-based interferometer, where a spatial light modulator was implemented to provide the phase modulation as the phase object. As the result, the mean absolute error of each pixel was 0.0614 pi.en_US
dc.language.isoen_USen_US
dc.subjectphase retrievalen_US
dc.subjectoptical imagingen_US
dc.subjectdeep learningen_US
dc.subjectdigital imaging processingen_US
dc.subjectspatial light modulatoren_US
dc.titleRecovery of Phase Modulation via Residual Neural Networken_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1117/12.2542620en_US
dc.identifier.journalSPIE FUTURE SENSING TECHNOLOGIESen_US
dc.citation.volume11197en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000526177400015en_US
dc.citation.woscount0en_US
顯示於類別:會議論文