完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yao, Yun-Zhen | en_US |
dc.contributor.author | Su, Jian-Jia | en_US |
dc.contributor.author | Li, Jie-En | en_US |
dc.contributor.author | Zhu, Zhi-Yu | en_US |
dc.contributor.author | Tien, Chung-Hao | en_US |
dc.date.accessioned | 2020-05-05T00:02:00Z | - |
dc.date.available | 2020-05-05T00:02:00Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.isbn | 978-1-5106-3112-0 | en_US |
dc.identifier.issn | 0277-786X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1117/12.2542620 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/154068 | - |
dc.description.abstract | An approach for recovering the phase information from the detected intensity was proposed in this work. Unlike the conventional approach based on the Gerchberg-Saxton algorithm, the proposed approach recovered the phase information via an alternative technique in the realm of deep learning, the residual neural network. The database we utilized to train the network was collected by a Michelson-based interferometer, where a spatial light modulator was implemented to provide the phase modulation as the phase object. As the result, the mean absolute error of each pixel was 0.0614 pi. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | phase retrieval | en_US |
dc.subject | optical imaging | en_US |
dc.subject | deep learning | en_US |
dc.subject | digital imaging processing | en_US |
dc.subject | spatial light modulator | en_US |
dc.title | Recovery of Phase Modulation via Residual Neural Network | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.doi | 10.1117/12.2542620 | en_US |
dc.identifier.journal | SPIE FUTURE SENSING TECHNOLOGIES | en_US |
dc.citation.volume | 11197 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 光電工程學系 | zh_TW |
dc.contributor.department | Department of Photonics | en_US |
dc.identifier.wosnumber | WOS:000526177400015 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 會議論文 |