完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Jiaen_US
dc.contributor.authorPan, Wen-Qianen_US
dc.contributor.authorLi, Yien_US
dc.contributor.authorKuang, Ruien_US
dc.contributor.authorHe, Yu-Huien_US
dc.contributor.authorLin, Chih-Yangen_US
dc.contributor.authorDuan, Nianen_US
dc.contributor.authorFeng, Gui-Rongen_US
dc.contributor.authorZheng, Hao-Xuanen_US
dc.contributor.authorChang, Ting-Changen_US
dc.contributor.authorSze, Simon M.en_US
dc.contributor.authorMiao, Xiang-Shuien_US
dc.date.accessioned2020-05-05T00:02:22Z-
dc.date.available2020-05-05T00:02:22Z-
dc.date.issued2020-03-01en_US
dc.identifier.issn0741-3106en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LED.2020.2968388en_US
dc.identifier.urihttp://hdl.handle.net/11536/154181-
dc.description.abstractMemristor emerges as the key enabler for neural network accelerator. Here, we demonstrate high-precision symmetric weight update in a one transistor one resistor (1T1R) structure Ti/HfO2/TiN memristor using a gate voltage ramping method, with over 120-level states and low variation (< 4%). Incorporating all experimental non-idealities, the proposed mixed hardware-software convolutional neural network demonstrates over 92.79% online learning accuracy (against software equivalent 98.45%) for MNIST recognition task. The network also shows robustness to input image noises, array yield, and retention issues.en_US
dc.language.isoen_USen_US
dc.subjectMemristoren_US
dc.subjectsymmetric weight updateen_US
dc.subjectconvolutional neural networken_US
dc.titleHigh-Precision Symmetric Weight Update of Memristor by Gate Voltage Ramping Method for Convolutional Neural Network Acceleratoren_US
dc.typeArticleen_US
dc.identifier.doi10.1109/LED.2020.2968388en_US
dc.identifier.journalIEEE ELECTRON DEVICE LETTERSen_US
dc.citation.volume41en_US
dc.citation.issue3en_US
dc.citation.spage353en_US
dc.citation.epage356en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000519704300011en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文