標題: High-Precision Symmetric Weight Update of Memristor by Gate Voltage Ramping Method for Convolutional Neural Network Accelerator
作者: Chen, Jia
Pan, Wen-Qian
Li, Yi
Kuang, Rui
He, Yu-Hui
Lin, Chih-Yang
Duan, Nian
Feng, Gui-Rong
Zheng, Hao-Xuan
Chang, Ting-Chang
Sze, Simon M.
Miao, Xiang-Shui
電子工程學系及電子研究所
Department of Electronics Engineering and Institute of Electronics
關鍵字: Memristor;symmetric weight update;convolutional neural network
公開日期: 1-三月-2020
摘要: Memristor emerges as the key enabler for neural network accelerator. Here, we demonstrate high-precision symmetric weight update in a one transistor one resistor (1T1R) structure Ti/HfO2/TiN memristor using a gate voltage ramping method, with over 120-level states and low variation (< 4%). Incorporating all experimental non-idealities, the proposed mixed hardware-software convolutional neural network demonstrates over 92.79% online learning accuracy (against software equivalent 98.45%) for MNIST recognition task. The network also shows robustness to input image noises, array yield, and retention issues.
URI: http://dx.doi.org/10.1109/LED.2020.2968388
http://hdl.handle.net/11536/154181
ISSN: 0741-3106
DOI: 10.1109/LED.2020.2968388
期刊: IEEE ELECTRON DEVICE LETTERS
Volume: 41
Issue: 3
起始頁: 353
結束頁: 356
顯示於類別:期刊論文