完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Han-Yingen_US
dc.contributor.authorHuang, Chien-Chiehen_US
dc.contributor.authorChang, Wen-Wheien_US
dc.contributor.authorChien, Jen-Tzungen_US
dc.date.accessioned2020-05-05T00:02:26Z-
dc.date.available2020-05-05T00:02:26Z-
dc.date.issued2020-04-01en_US
dc.identifier.issn0916-8508en_US
dc.identifier.urihttp://dx.doi.org/10.1587/transfun.2019EAP1107en_US
dc.identifier.urihttp://hdl.handle.net/11536/154251-
dc.description.abstractThis study presents a new method to exploit both accent and grouping structures of music in meter estimation. The system starts by extracting autocorrelation-based features that characterize accent periodicities. Based on the local boundary detection model, we construct grouping features that serve as additional cues for inferring meter. After the feature extraction, a multi-layer cascaded classifier based on neural network is incorporated to derive the most likely meter of input melody. Experiments on 7351 folk melodies in MIDI files indicate that the proposed system achieves an accuracy of 95.76% for classification into nine categories of meters.en_US
dc.language.isoen_USen_US
dc.subjectmeter estimationen_US
dc.subjectaccent periodicitiesen_US
dc.subjectgrouping structureen_US
dc.subjectlocal boundary detection modelen_US
dc.subjectneural networken_US
dc.titleThe Role of Accent and Grouping Structures in Estimating Musical Meteren_US
dc.typeArticleen_US
dc.identifier.doi10.1587/transfun.2019EAP1107en_US
dc.identifier.journalIEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCESen_US
dc.citation.volumeE103Aen_US
dc.citation.issue4en_US
dc.citation.spage649en_US
dc.citation.epage656en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000522795900001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文