標題: | NEWS RECOMMENDATION BASED ON COLLABORATIVE SEMANTIC TOPIC MODELS AND RECOMMENDATION ADJUSTMENT |
作者: | Liao, Yu-Shan Lu, Jun-Yi Liu, Duen-Ren 資訊管理與財務金融系 註:原資管所+財金所 Department of Information Management and Finance |
關鍵字: | Recommendation;Latent topic analysis;Collaborative topic model;Recommendation adjustment |
公開日期: | 1-Jan-2019 |
摘要: | Providing news recommendations is an important trend for online news websites to attract more users and create more benefits. In this research, we propose a novel recommendation approach for recommending news articles. We propose A Collaborative Semantic Topic Model and an ensemble model to predict user preferences based on combining Matrix Factorization with articles' semantic latent topics derived from word embedding and Latent Dirichlet Allocation. The proposed ensemble model is further integrated with a recommendation adjustment mechanism to adjust users' online recommendation lists. We evaluate the proposed approach via offline experiments and online evaluation on a real news website. The experimental result demonstrates that our proposed approach can improve the recommendation quality of recommending news articles. |
URI: | http://hdl.handle.net/11536/154277 |
ISBN: | 978-1-7281-2816-0 |
ISSN: | 2160-133X |
期刊: | PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC) |
起始頁: | 54 |
結束頁: | 59 |
Appears in Collections: | Conferences Paper |