Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, K. I.en_US
dc.contributor.authorChen, Yi-Chungen_US
dc.contributor.authorLee, Tzu-Changen_US
dc.contributor.authorWang, Sheng-Minen_US
dc.date.accessioned2020-07-01T05:20:35Z-
dc.date.available2020-07-01T05:20:35Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-2816-0en_US
dc.identifier.issn2160-133Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/154278-
dc.description.abstractThis paper presents a head motion detection and recognition study using a smart helmet for motorcycle rider which can potential be used for the analysis of behavior of motorcycle riders. The smart helmet is a full face motorcycle helmet integrated with an intelligent system embedded an Inertial Measurement Unit (IMU) sensor. In the analysis, the motions and the corresponding signals are assessed with the video footage with a data acquisition and visualization platform. We introduce a feature extraction methodology to extract the most discriminant features from the signal data, and the head motion recognition problem is formulated as a machine-learning based classification model. Experiment results show that gyroscope sensor data is more useful than accelerometer sensor data for head motion recognition and the classification accuracy for different head motions ranges from 95.9% to 99.1%.en_US
dc.language.isoen_USen_US
dc.subjectTrackingen_US
dc.subjectActivity classificationen_US
dc.subjectHead motionen_US
dc.subjectIMUsen_US
dc.subjectMotorcycleen_US
dc.subjectSmart helmeten_US
dc.subjectWearable sensorsen_US
dc.titleHEAD MOTION RECOGNITION USING A SMART HELMET FOR MOTORCYCLE RIDERSen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC)en_US
dc.citation.spage307en_US
dc.citation.epage313en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000529201300052en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper