Full metadata record
DC FieldValueLanguage
dc.contributor.authorMa, H. H.en_US
dc.contributor.authorMa, Y. Y.en_US
dc.contributor.authorYu, Z. W.en_US
dc.contributor.authorJiang, P.en_US
dc.contributor.authorFan, F.en_US
dc.contributor.authorMeng, Z. P.en_US
dc.date.accessioned2020-07-01T05:21:13Z-
dc.date.available2020-07-01T05:21:13Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn0141-0296en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.engstruct.2020.110349en_US
dc.identifier.urihttp://hdl.handle.net/11536/154301-
dc.description.abstractThe bolt-column (BC) joint has enough bending stiffness satisfying large-span single-layer reticulated shell structure well. The hysteretic behavior of BC joints under different in-plane combinations of bending moment and axial force is investigated in this study. Firstly, precise finite element models (FEM) of the BC joints, which considered the material and the geometric and contact nonlinearities, were established in ABAQUS. The failure modes, hysteretic curves, skeleton curves, and bearing capacity for assessing the joint hysteretic behavior were investigated in detail by the numerical analysis. BC joints under different combined axial force and cyclic bending loads were studied by numerical analysis to obtain the impact of the axial force, which provides necessary technical support for engineering practice. Three tests were conducted and the results verified that the FEM was effective in simulating the joint behavior by comparison with the test results. The research shows that the hysteretic capacity of BC joints under in-plane bending is weaker than that under out-of-plane bending, but the bearing capacity of former is higher. Increasing the thickness of the side and middle plates can slightly enhance the joint in-plane hysteretic capacity, which is improved with small axial compression and reduced with high axial compression and axial tension.en_US
dc.language.isoen_USen_US
dc.subjectBolt-column jointen_US
dc.subjectHysteretic behavioren_US
dc.subjectSemi-rigiden_US
dc.subjectSingle-layer reticulated shellen_US
dc.subjectIn-plane bendingen_US
dc.titleHysteretic behavior of bolt-column joints under in-plane loading combinations by experimental and numerical studyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.engstruct.2020.110349en_US
dc.identifier.journalENGINEERING STRUCTURESen_US
dc.citation.volume212en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000529917400003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles