完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLee, Ming-Yien_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorChuang, Min-Huien_US
dc.contributor.authorOhori, Daisukeen_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2020-07-01T05:22:05Z-
dc.date.available2020-07-01T05:22:05Z-
dc.date.issued2020-05-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2020.2975079en_US
dc.identifier.urihttp://hdl.handle.net/11536/154508-
dc.description.abstractThe electron band structure and phonon energy dispersion of the silicon nanowires (SiNWs) embedded in SiGe0.3 (SiNW-SiGe0.3 composite) are simulated by using the effective mass Schrodinger equation and the elastodynamic wave equation, respectively. Then, the TE properties of the SiNW-SiGe0.3 composite are investigated by the Landauer approach. The simulation shows the contribution from electrons/holes on both electrical conductance and thermal conductance increases few times by introducing SiNWs, but on the other hand, lattice thermal conductance reduces around two orders. These results are consistent with the experimental measurement and indicates that much lower lattice thermal conductance dominates the TE performance of the SiNW-SiGe0.3 composite.en_US
dc.language.isoen_USen_US
dc.subjectLandauer approachen_US
dc.subjectsilicon nanowire (SiNW)en_US
dc.subjectthermal conductivityen_US
dc.titleNumerical Simulation of Thermal Conductivity of SiNW-SiGe0.3 Composite for Thermoelectric Applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2020.2975079en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume67en_US
dc.citation.issue5en_US
dc.citation.spage2088en_US
dc.citation.epage2092en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000538156600025en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文