完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yi-Hsuanen_US
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2020-07-01T05:22:08Z-
dc.date.available2020-07-01T05:22:08Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn0025-5874en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00209-019-02372-zen_US
dc.identifier.urihttp://hdl.handle.net/11536/154554-
dc.description.abstractLet QD be the set of moduli points on Siegel's modular threefold whose corresponding principally polarized abelian surfaces have quaternionic multiplication by a maximal order O in an indefinite quaternion algebra of discriminant D over Q such that the Rosati involution coincides with a positive involution of the form alpha & x21a6;mu-1 alpha over bar mu on O for some mu is an element of O with mu 2+D=0. In this paper, we first give a formula for the number of irreducible components in QD, strengthening an earlier result of Rotger. Then for each irreducible component of genus 0, we determine its rational parameterization in terms of a Hauptmodul of the associated Shimura curve.en_US
dc.language.isoen_USen_US
dc.subjectPrimary 11G15en_US
dc.subjectSecondary 11F03en_US
dc.subject11F46en_US
dc.subject11G10en_US
dc.titleQuaternionic loci in Siegel's modular threefolden_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00209-019-02372-zen_US
dc.identifier.journalMATHEMATISCHE ZEITSCHRIFTen_US
dc.citation.volume295en_US
dc.citation.issue1-2en_US
dc.citation.spage775en_US
dc.citation.epage819en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000534474400033en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文