Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Yung-Changen_US
dc.contributor.authorJi, Hyun Gooen_US
dc.contributor.authorChang, Li-Jenen_US
dc.contributor.authorChang, Yao-Pangen_US
dc.contributor.authorLiu, Zhengen_US
dc.contributor.authorLee, Gun-Doen_US
dc.contributor.authorChiu, Po-Wenen_US
dc.contributor.authorAgo, Hirokien_US
dc.contributor.authorSuenaga, Kazuen_US
dc.date.accessioned2020-07-01T05:22:13Z-
dc.date.available2020-07-01T05:22:13Z-
dc.date.issued2020-05-26en_US
dc.identifier.issn1936-0851en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsnano.0c01729en_US
dc.identifier.urihttp://hdl.handle.net/11536/154636-
dc.description.abstractScanning moire fringe (SMF) is a widely utilized technique for the precise measurement of the strain field in semiconductor transistors and heterointerfaces. With the growing challenges of traditional chip scaling, two-dimensional (2D) materials turn out to be ideal candidates for incorporation into semiconductor devices. Therefore, a method to efficiently locate defects and grain boundaries in 2D materials is highly essential. Here, we present a demonstration of using the SMF method to locate the domain boundaries at the nearly coherent interfaces with sub-angstrom spatial resolution under submicron fields of views. The strain field of small angle grain boundary and lateral heterojunction are instantaneously found and precisely determined by a quick SMF method without any atomic resolution images.en_US
dc.language.isoen_USen_US
dc.subjectSTEMen_US
dc.subjectscan moire fringeen_US
dc.subjecttransition-metal dichalcogenidesen_US
dc.subjectstrain fielden_US
dc.subjectdislocationsen_US
dc.titleScanning Moire Fringe Method: A Superior Approach to Perceive Defects, Interfaces, and Distortion in 2D Materialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsnano.0c01729en_US
dc.identifier.journalACS NANOen_US
dc.citation.volume14en_US
dc.citation.issue5en_US
dc.citation.spage6034en_US
dc.citation.epage6042en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000537682300087en_US
dc.citation.woscount0en_US
Appears in Collections:Articles