Full metadata record
DC FieldValueLanguage
dc.contributor.authorLai, Hsu-Chaoen_US
dc.contributor.authorShuai, Hong-Hanen_US
dc.contributor.authorYang, De-Nianen_US
dc.contributor.authorHuang, Jiun-Longen_US
dc.contributor.authorLee, Wang-Chienen_US
dc.contributor.authorYu, Philip S.en_US
dc.date.accessioned2020-10-05T02:00:29Z-
dc.date.available2020-10-05T02:00:29Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-4503-6976-3en_US
dc.identifier.urihttp://dx.doi.org/10.1145/3357384.3357952en_US
dc.identifier.urihttp://hdl.handle.net/11536/155014-
dc.description.abstractRecent technological advent in virtual reality (VR) has attracted a lot of attention to the VR shopping, which thus far is designed for a single user. In this paper, we envision the scenario of VR group shopping, where VR supports: 1) flexible display of items to address diverse personal preferences, and 2) convenient view switching between personal and group views to foster social interactions. We formulate the Multiview-Enabled Configuration Recommendation (MECR) problem to rank a set of displayed items for a VR shopping user. We design the Multiview-Enabled Configuration Ranking System (MEIRS) that first extracts discriminative features based on Marketing theories and then introduces a new coupled tensor factorization model to learn the representation of users, Multi-View Display (MVD) configurations, and multiple feedback with content features. Experimental results manifest that the proposed approach outperforms personalized recommendations and group recommendations by at least 30.8% in large-scale datasets and 63.3% in the user study in terms of hit ratio and mean average precision.en_US
dc.language.isoen_USen_US
dc.subjectVirtual reality group shoppingen_US
dc.subjectconfiguration recommendationen_US
dc.subjectMulti-View Displayen_US
dc.subjectcoupled tensor factorizationen_US
dc.titleSocial-Aware VR Configuration Recommendation via Multi-Feedback Coupled Tensor Factorizationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/3357384.3357952en_US
dc.identifier.journalPROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19)en_US
dc.citation.spage1773en_US
dc.citation.epage1782en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000539898201083en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper