完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Hung-Jenen_US
dc.contributor.authorHui, Ka-Mingen_US
dc.contributor.authorWang, Szu-Yuen_US
dc.contributor.authorTsao, Li-Wuen_US
dc.contributor.authorShuai, Hong-Hanen_US
dc.contributor.authorCheng, Wen-Huangen_US
dc.date.accessioned2020-10-05T02:00:31Z-
dc.date.available2020-10-05T02:00:31Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-3293-8en_US
dc.identifier.issn1063-6919en_US
dc.identifier.urihttp://dx.doi.org/10.1109/CVPR.2019.01028en_US
dc.identifier.urihttp://hdl.handle.net/11536/155050-
dc.description.abstractAs makeup has been widely-adopted for beautification, finding suitable makeup by virtual makeup applications becomes popular. Therefore, a recent line of studies proposes to transfer the makeup from a given reference makeup image to the source non-makeup one. However, it is still challenging due to the massive number of makeup combinations. To facilitate on-demand makeup transfer, in this work, we propose BeautyGlow that decompose the latent vectors of face images derived from the Glow model into makeup and non makeup latent vectors. Since there is no paired dataset, we formulate a new loss function to guide the decomposition. Afterward, the non-makeup latent vector of a source image and makeup latent vector of a reference image and are effectively combined and revert back to the image domain to derive the results. Experimental results show that the transfer quality of BeautyGlow is comparable to the state-of-the-art methods, while the unique ability to manipulate latent vectors allows BeautyGlow to realize on-demand makeup transfer.en_US
dc.language.isoen_USen_US
dc.titleBeautyGlow: On-Demand Makeup Transfer Framework with Reversible Generative Networken_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/CVPR.2019.01028en_US
dc.identifier.journal2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019)en_US
dc.citation.spage10034en_US
dc.citation.epage10042en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000542649303066en_US
dc.citation.woscount3en_US
顯示於類別:會議論文