完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTeng, Ya-Wenen_US
dc.contributor.authorShi, Yishuoen_US
dc.contributor.authorTsai, Jui-Yien_US
dc.contributor.authorShuai, Hong-Hanen_US
dc.contributor.authorTai, Chih-Huaen_US
dc.contributor.authorYang, De-Nianen_US
dc.date.accessioned2020-10-05T02:01:27Z-
dc.date.available2020-10-05T02:01:27Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-0962-6en_US
dc.identifier.issn2334-0983en_US
dc.identifier.urihttp://hdl.handle.net/11536/155234-
dc.description.abstractExisting research on social networks manifests two crucial criteria to improve activity engagement of users: (1) user interests in the activity topics and (2) opportunities of making new friends with some acquaintances. However, current online platforms still involve massive manual selection for activity attendees and contents without proper recommendations. In this paper, therefore, we formulate a new activity organization problem, named Social Knowledge Group Query (SKGQ), to recommend attendees and topic-related contents simultaneously. We prove that SKGQ is NP-hard and design an approximation algorithm, named Social cOntent Knowledge Exploration (SOKE), to jointly choose the activity attendees and topic-related contents according to social-oriented and topic-oriented strategies. Simulation results manifest that the solution acquired by SOKE is close to the optimal solution and outperforms various baselines.en_US
dc.language.isoen_USen_US
dc.subjectsocial networken_US
dc.subjectknowledge graphen_US
dc.subjectsocial-topic engagementen_US
dc.subjectgroup queryen_US
dc.titleOptimizing Social-Topic Engagement on Social Network and Knowledge Graphen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000552238602117en_US
dc.citation.woscount0en_US
顯示於類別:會議論文