完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChai, Chun-Yuen_US
dc.contributor.authorHsu, Keng-Fuen_US
dc.contributor.authorTsao, Shiao-Lien_US
dc.date.accessioned2020-10-05T02:01:28Z-
dc.date.available2020-10-05T02:01:28Z-
dc.date.issued2019-01-01en_US
dc.identifier.isbn978-1-7281-4004-9en_US
dc.identifier.issn2153-0858en_US
dc.identifier.urihttp://hdl.handle.net/11536/155253-
dc.description.abstractThis paper presents an object-centric method for efficiently performing two types of challenging pick-and-place tasks, namely sequential pick and place and object sorting. We propose multiclass dense object nets (MCDONs) for learning object-centric dense descriptors that maintain not only intraclass variations but also inter-class separation. Intra-class consistency is also inherently learned and is useful for our pick-and-place tasks. All the tasks only require a single demonstration from users, which can then be generalized to all class instances. A dataset containing eight classes and a total of 52 objects was provided in this study. We obtained a task success rate of 93.33% on a five-block stacking task and 97.41% on a three-class object sorting task.en_US
dc.language.isoen_USen_US
dc.titleMulti-step Pick-and-Place Tasks Using Object-centric Dense Correspondencesen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)en_US
dc.citation.spage4004en_US
dc.citation.epage4011en_US
dc.contributor.department資訊科學與工程研究所zh_TW
dc.contributor.departmentInstitute of Computer Science and Engineeringen_US
dc.identifier.wosnumberWOS:000544658403043en_US
dc.citation.woscount0en_US
顯示於類別:會議論文