Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Peien_US
dc.contributor.authorWang, Hao-Chengen_US
dc.contributor.authorZheng, Ranen_US
dc.contributor.authorZhu, Yuanen_US
dc.contributor.authorDai, Shuixingen_US
dc.contributor.authorLi, Zeyuanen_US
dc.contributor.authorChen, Chung-Haoen_US
dc.contributor.authorZhao, Yepinen_US
dc.contributor.authorWang, Ruien_US
dc.contributor.authorMeng, Dongen_US
dc.contributor.authorZhu, Chenhuien_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.contributor.authorZhan, Xiaoweien_US
dc.contributor.authorYang, Yangen_US
dc.date.accessioned2020-10-05T02:01:58Z-
dc.date.available2020-10-05T02:01:58Z-
dc.date.issued1970-01-01en_US
dc.identifier.issn0935-9648en_US
dc.identifier.urihttp://dx.doi.org/10.1002/adma.202002315en_US
dc.identifier.urihttp://hdl.handle.net/11536/155379-
dc.description.abstractIn tandem organic photovoltaics, the front subcell is based on large-bandgap materials, whereas the case of the rear subcell is more complicated. The rear subcell is generally composed of a narrow-bandgap acceptor for infrared absorption but a large-bandgap donor to realize a high open-circuit voltage. Unfortunately, most of the ultraviolet-visible part of the photons are absorbed by the front subcell; as a result, in the rear subcell, the number of excitons generated on large-bandgap donors will be reduced significantly. This reduces the (photo) conductivity and finally limits the hole-transporting property of the rear subcell. In this work, a simple and effective way is proposed to resolve this critical issue. To ensure sufficient photogenerated holes in the rear subcell, a small amount of an infrared-absorbing polymer donor as a third component is introduced, which provides a second hole-generation and transporting mechanism to minimize the aforementioned detrimental effects. Finally, the short-circuit current density of the two-terminal tandem organic photovoltaic is significantly enhanced from 10.3 to 11.7 mA cm(-2)(while retaining the open-circuit voltage and fill factor) to result in an enhanced power conversion efficiency of 15.1%.en_US
dc.language.isoen_USen_US
dc.subjectcharge transporten_US
dc.subjectexciton generationen_US
dc.subjectnonfullereneen_US
dc.subjectorganic solar cellsen_US
dc.subjecttandemen_US
dc.titleEnabling High-Performance Tandem Organic Photovoltaic Cells by Balancing the Front and Rear Subcellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/adma.202002315en_US
dc.identifier.journalADVANCED MATERIALSen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000560602000001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles