Full metadata record
DC FieldValueLanguage
dc.contributor.authorMineo, H.en_US
dc.contributor.authorWang, Y. H.en_US
dc.contributor.authorChao, S. D.en_US
dc.contributor.authorLin, S. H.en_US
dc.date.accessioned2014-12-08T15:21:51Z-
dc.date.available2014-12-08T15:21:51Z-
dc.date.issued2012-03-13en_US
dc.identifier.issn0301-0104en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.chemphys.2012.01.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/15551-
dc.description.abstractWe have calculated the vibrational and rotational autoionization rate constants for diatomic molecules H-2, N-2, and HCl in high Rydberg states by employing the density matrix formulation with the inverse Born-Oppenheimer approximation basis set. The purpose is to simulate the main radiationless processes occurring in zero electron kinetic energy (ZEKE) spectroscopy. The quantum numbers and the energy dependences of the calculated autoionization rate constants are represented as the scaling laws via nonlinear regression. These data provide a suitable starting point for quantitative study of the intricate dynamics involved in ZEKE Rydberg states. (C) 2012 Elsevier B. V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectDensity matrix methoden_US
dc.subjectInverse Born-Oppenheimer approximationen_US
dc.subjectZero electron kinetic energy (ZEKE) spectroscopyen_US
dc.subjectAutoionizationen_US
dc.subjectRydberg statesen_US
dc.titleAutoionization rate constants of zero electron kinetic energy Rydberg statesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.chemphys.2012.01.002en_US
dc.identifier.journalCHEMICAL PHYSICSen_US
dc.citation.volume397en_US
dc.citation.issue1en_US
dc.citation.spage74en_US
dc.citation.epage81en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000301125700010-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000301125700010.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.