完整後設資料紀錄
DC 欄位語言
dc.contributor.authorPeng, Huan-Kaien_US
dc.contributor.authorHuang, Hsuan-Mingen_US
dc.contributor.authorKuo, Yu-Hsinen_US
dc.contributor.authorWen, Charles H. -P.en_US
dc.date.accessioned2014-12-08T15:22:06Z-
dc.date.available2014-12-08T15:22:06Z-
dc.date.issued2012-01-01en_US
dc.identifier.issn1084-4309en_US
dc.identifier.urihttp://dx.doi.org/10.1145/2071356.2071365en_US
dc.identifier.urihttp://hdl.handle.net/11536/15693-
dc.description.abstractThis article re-examines the soft error effect caused by radiation-induced particles beyond the deep submicron regime. Considering the impact of process variations, voltage pulse widths of transient faults are found no longer monotonically diminishing after propagation, as they were formerly. As a result, the soft error rates in scaled electronic designs escape traditional static analysis and are seriously underestimated. In this article we formulate the statistical soft error rate (SSER) problem and present two frameworks to cope with the aforementioned sophisticated issues. The table-lookup framework captures the change of transient-fault distributions implicitly by using a Monte-Carlo approach, whereas the SVR-learning framework does the task explicitly by using statistical learning theory. Experimental results show that both frameworks can more accurately estimate SERs than static approaches do. Meanwhile, the SVR-learning framework outperforms the table-lookup framework in both SER accuracy and runtime.en_US
dc.language.isoen_USen_US
dc.subjectAlgorithmsen_US
dc.subjectPerformanceen_US
dc.subjectSoft erroren_US
dc.subjecttransient faulten_US
dc.subjectstatistical learningen_US
dc.subjectMonte Carlo methoden_US
dc.subjectsupport vector machineen_US
dc.titleStatistical Soft Error Rate (SSER) Analysis for Scaled CMOS Designsen_US
dc.typeArticleen_US
dc.identifier.doi10.1145/2071356.2071365en_US
dc.identifier.journalACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMSen_US
dc.citation.volume17en_US
dc.citation.issue1en_US
dc.citation.epageen_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000300301800009-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000300301800009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。