Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Hau-wenen_US
dc.date.accessioned2014-12-08T15:22:20Z-
dc.date.available2014-12-08T15:22:20Z-
dc.date.issued2012-03-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2011.08.033en_US
dc.identifier.urihttp://hdl.handle.net/11536/15812-
dc.description.abstractLet K denote an algebraically closed field. Let V denote a vector space over K with finite positive dimension. By a Leonard triple on V we mean an ordered triple of linear transformations in End(V) such that for each of these transformations there exists a basis of V with respect to which the matrix representing that transformation is diagonal and the matrices representing the other two transformations are irreducible tridiagonal. There is a family of Leonard triples said to have QRacah type. This is the most general type of Leonard triple. We classify the Leonard triples of QRacah type up to isomorphism. We show that any Leonard triple of QRacah type satisfies the Z(3)-symmetric Askey-Wilson relations. (C) 2011 Published by Elsevier Inc.en_US
dc.language.isoen_USen_US
dc.subjectLeonard triplesen_US
dc.subjectAskey-Wilson relationsen_US
dc.titleThe classification of Leonard triples of QRacah typeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2011.08.033en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume436en_US
dc.citation.issue5en_US
dc.citation.spage1442en_US
dc.citation.epage1472en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000300482500034-
dc.citation.woscount9-
Appears in Collections:Articles


Files in This Item:

  1. 000300482500034.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.