完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Liang-Chengen_US
dc.contributor.authorChu, Hone-Jayen_US
dc.contributor.authorHsiao, Chin-Tsaien_US
dc.date.accessioned2014-12-08T15:22:20Z-
dc.date.available2014-12-08T15:22:20Z-
dc.date.issued2012-03-01en_US
dc.identifier.issn0920-4741en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11269-011-9957-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/15815-
dc.description.abstractThis study integrates an artificial neural network (ANN) and constrained differential dynamic programming (CDDP) to search for optimal solutions to a nonlinear time-varying groundwater remediation-planning problem. The proposed model (ANN-CDDP) determines optimal dynamic pumping schemes to minimize operating costs and meet water quality requirements. The model uses two embedded ANNs, including groundwater flow and contaminant transport models, as transition functions to predict groundwater levels and contaminant concentrations under time-varying pumping. Results demonstrate that ANN-CDDP is a simplified management model that requires considerably less computation time to solve a fine mesh problem. For example, the ANN-CDDP computing time for a case involving 364 nodes is 1/26.5 that of the conventional optimization model.en_US
dc.language.isoen_USen_US
dc.subjectNeural networken_US
dc.subjectConstrained differential dynamic programmingen_US
dc.subjectGroundwater qualityen_US
dc.subjectOptimizationen_US
dc.titleIntegration of Optimal Dynamic Control and Neural Network for Groundwater Quality Managementen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11269-011-9957-0en_US
dc.identifier.journalWATER RESOURCES MANAGEMENTen_US
dc.citation.volume26en_US
dc.citation.issue5en_US
dc.citation.spage1253en_US
dc.citation.epage1269en_US
dc.contributor.department土木工程學系zh_TW
dc.contributor.departmentDepartment of Civil Engineeringen_US
dc.identifier.wosnumberWOS:000301847400012-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000301847400012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。