Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Hsiuyingen_US
dc.contributor.authorHung, Shan-Linen_US
dc.date.accessioned2014-12-08T15:22:23Z-
dc.date.available2014-12-08T15:22:23Z-
dc.date.issued2012en_US
dc.identifier.issn0266-4763en_US
dc.identifier.urihttp://hdl.handle.net/11536/15855-
dc.identifier.urihttp://dx.doi.org/10.1080/02664763.2011.610442en_US
dc.description.abstractThe reconstruction of phylogenetic trees is one of the most important and interesting problems of the evolutionary study. There are many methods proposed in the literature for constructing phylogenetic trees. Each approach is based on different criteria and evolutionary models. However, the topologies of trees constructed from different methods may be quite different. The topological errors may be due to unsuitable criterions or evolutionary models. Since there are many tree construction approaches, we are interested in selecting a better tree to fit the true model. In this study, we propose an adjusted k-means approach and a misclassification error score criterion to solve the problem. The simulation study shows this method can select better trees among the potential candidates, which can provide a useful way in phylogenetic tree selection.en_US
dc.language.isoen_USen_US
dc.subjectphylogenetic treeen_US
dc.subjectmisclassification erroren_US
dc.subjectk-meansen_US
dc.subjectadjusted k-meansen_US
dc.titlePhylogenetic tree selection by the adjusted k-means approachen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/02664763.2011.610442en_US
dc.identifier.journalJOURNAL OF APPLIED STATISTICSen_US
dc.citation.volume39en_US
dc.citation.issue3en_US
dc.citation.spage643en_US
dc.citation.epage655en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000302020400014-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000302020400014.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.