完整後設資料紀錄
DC 欄位語言
dc.contributor.authorGuo, Chun-Huaen_US
dc.contributor.authorKuo, Yueh-Chengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:22:23Z-
dc.date.available2014-12-08T15:22:23Z-
dc.date.issued2012en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://hdl.handle.net/11536/15856-
dc.identifier.urihttp://dx.doi.org/10.1137/100814706en_US
dc.description.abstractThe matrix equation X + A (vertical bar) X(-1)A - Q arises in Green's function calculations in nano research, where A is a real square matrix and Q is a real symmetric matrix dependent on a parameter and is usually indefinite. In practice one is mainly interested in those values of the parameter for which the matrix equation has no stabilizing solutions. The solution of interest in this case is a special weakly stabilizing complex symmetric solution X-*, which is the limit of the unique stabilizing solution X-eta of the perturbed equation X + A(inverted perpendicular) X(-1)A = Q + i eta I, as eta -> 0(+). It has been shown that a doubling algorithm can be used to compute X-eta efficiently even for very small values of eta, thus providing good approximations to X-*. It has been observed by nano scientists that a modified fixed-point method can sometimes be quite useful, particularly for computing X-eta for many different values of the parameter. We provide a rigorous analysis of this modified fixed-point method and its variant and of their generalizations. We also show that the imaginary part X-I of the matrix X-* is positive semidefinite and we determine the rank of X-I in terms of the number of unimodular eigenvalues of the quadratic pencil lambda(2)A(inverted perpendicular) - lambda Q + A. Finally we present a new structure-preserving algorithm that is applied directly on the equation X + A(inverted perpendicular) X(-1)A = Q. In doing so, we work with real arithmetic most of the time.en_US
dc.language.isoen_USen_US
dc.subjectnonlinear matrix equationen_US
dc.subjectcomplex symmetric solutionen_US
dc.subjectweakly stabilizing solutionen_US
dc.subjectfixed-point iterationen_US
dc.subjectstructure-preserving algorithmen_US
dc.subjectGreen's functionen_US
dc.titleON A NONLINEAR MATRIX EQUATION ARISING IN NANO RESEARCHen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/100814706en_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume33en_US
dc.citation.issue1en_US
dc.citation.spage235en_US
dc.citation.epage262en_US
dc.contributor.department數學建模與科學計算所(含中心)zh_TW
dc.contributor.departmentGraduate Program of Mathematical Modeling and Scientific Computing, Department of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000302235600012-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000302235600012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。