完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChiang, Shun-Fanen_US
dc.contributor.authorLin, Bang-Yanen_US
dc.contributor.authorChang, Hung-Chunen_US
dc.contributor.authorTeng, Chun-Haoen_US
dc.contributor.authorWang, Chih-Yuen_US
dc.contributor.authorChung, Shih-Yungen_US
dc.date.accessioned2014-12-08T15:22:32Z-
dc.date.available2014-12-08T15:22:32Z-
dc.date.issued2012-07-01en_US
dc.identifier.issn0733-8724en_US
dc.identifier.urihttp://hdl.handle.net/11536/15939-
dc.description.abstractWe propose a pseudospectral mode solver for optical waveguide mode analysis formulated by the frequency-domain Maxwell equations. Special attention is paid upon identifying the required boundary operator for the formulation and the relationships between the derived operator and the physical boundary conditions. These theoretical results are adopted into a Legendre pseudospectral multidomain computational framework to compute the propagation characteristics of optical waveguides. Numerical experiments are conducted, and the expected spectral convergence of the scheme is observed for smooth problems and for problems having field jumps at material interfaces. For dielectric waveguides with sharp corners, the spectral convergence is lost due to the singular nature of fields at the corner. Nevertheless, compared with other methods, the present formulation remains as an efficient approach to obtain waveguide modes.en_US
dc.language.isoen_USen_US
dc.subjectFrequency-domain Maxwell's equationsen_US
dc.subjectoptical waveguidesen_US
dc.subjectpenalty boundary conditionsen_US
dc.subjectpseudospectral methodsen_US
dc.subjectwaveguide analysisen_US
dc.titleA Multidomain Pseudospectral Mode Solver for Optical Waveguide Analysisen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF LIGHTWAVE TECHNOLOGYen_US
dc.citation.volume30en_US
dc.citation.issue13en_US
dc.citation.epage2077en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000303503000005-
dc.citation.woscount4-
顯示於類別:期刊論文


文件中的檔案:

  1. 000303503000005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。