Full metadata record
DC FieldValueLanguage
dc.contributor.authorShieh, Min-Zhengen_US
dc.contributor.authorTsai, Shi-Chunen_US
dc.date.accessioned2014-12-08T15:22:32Z-
dc.date.available2014-12-08T15:22:32Z-
dc.date.issued2012-07-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://hdl.handle.net/11536/15941-
dc.description.abstractLet S-n(lambda) be the set of all permutations over the multiset { [GRAPHICS] , .... , [GRAPHICS] } where n = m lambda. A frequency permutation array (FPA) of minimum distance d is a subset of S-n(lambda) which every two elements have distance at least d. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert-Varshamov bound and the sphere-packing bound are derived from the size of balls of certain radii. We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Here it is equivalent to computing the permanent of a special type of matrix, which generalizes the Toepliz matrix in some sense. Both methods extend previous known results. The first one runs in O (((2d lambda)(d lambda))(2.376) log n) time and O(((2d lambda)(d lambda))(2)) space. The second one runs in O (((2d lambda)(d lambda)) ((d lambda+lambda)(lambda))n/lambda) time and O (((2d lambda)(d lambda))) space. For small constants lambda and d, both are efficient in time and use constant storage space. (C) 2012 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPermanenten_US
dc.subjectPermutationen_US
dc.subjectCoding theoryen_US
dc.subjectSphere-packingen_US
dc.titleComputing the ball size of frequency permutations under Chebyshev distanceen_US
dc.typeArticleen_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume437en_US
dc.citation.issue1en_US
dc.citation.epage324en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000303636000023-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000303636000023.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.