Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Yimingen_US
dc.date.accessioned2014-12-08T15:22:45Z-
dc.date.available2014-12-08T15:22:45Z-
dc.date.issued2009en_US
dc.identifier.isbn978-0-7354-0644-5en_US
dc.identifier.issn0094-243Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/16082-
dc.description.abstractIn this work, we experimentally compare the effect of random number generations on the performance of semiconductor device model parameter extraction. Based upon the genetic algorithm, the neural network and the Levenberg-Marquardt method, the prototype of parameter extraction has been developed in our earlier work. Property of the evolutionary technique is further advanced by implementing eight different random number generation schemes, where convergent behavior is compared. For both extraction cases of single and multiple nanoscale devices, the chaotic random number generator possesses superior convergence behavior than other random number generation methods. It generates the random numbers with better distribution which keeps the high diversity of the extraction system, thus the best performance of the convergence score is reached.en_US
dc.language.isoen_USen_US
dc.subjectRandom numberen_US
dc.subjectchaotic random number generatoren_US
dc.subjectgenetic algorithmen_US
dc.subjectintelligent methodologyen_US
dc.subjectdevice model parameter extractionen_US
dc.titleEffects of Random Number Generations on Intelligent Semiconductor Device Model Parameter Extractionen_US
dc.typeProceedings Paperen_US
dc.identifier.journalCOMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 1en_US
dc.citation.volume1108en_US
dc.citation.spage265en_US
dc.citation.epage271en_US
dc.contributor.department電信工程研究所zh_TW
dc.contributor.departmentInstitute of Communications Engineeringen_US
dc.identifier.wosnumberWOS:000265172400027-
Appears in Collections:Conferences Paper