標題: Hybrid Differential Evolution and Particle Swarm Optimization Approach to Surface-Potential-Based Model Parameter Extraction for Nanoscale MOSFETs
作者: Li, Yiming
Tseng, Yu-Hsiang
傳播研究所
電機工程學系
Institute of Communication Studies
Department of Electrical and Computer Engineering
關鍵字: Differential evolution;Hybrid method;MOSFET;Parameter extraction;Particle swarm optimization;PSP
公開日期: 2011
摘要: A set of semiconductor device model and parameters bridges the communities between circuit design and chip fabrication. In this article, we present an intelligent extraction technique for obtaining a set of optimal model parameters of the surface-potential-based PSP model for the sub-45-nm metal-oxide-semiconductor field effect transistors (MOSFETs). The proposed algorithm combines the standard velocity and position update rules in a particle swarm optimization (PSO) algorithm, and the operations of differential mutation and probability crossover from a differential evolution method. This differential approach can increase the diversity of the population and help particles escape from the local optimal solutions. In addition, the adopted fitness function considers not only the error of the I-V curves, but also their first derivatives. Compared with conventional engineering extraction strategy, the hybrid method extracts 14 DC parameters simultaneously for sub-45-nm N-MOSFET devices. The best accuracy and interesting computational efficiency are obtained by several testing cases.
URI: http://hdl.handle.net/11536/26010
http://dx.doi.org/10.1080/10426914.2010.526977
ISSN: 1042-6914
DOI: 10.1080/10426914.2010.526977
期刊: MATERIALS AND MANUFACTURING PROCESSES
Volume: 26
Issue: 3
起始頁: 388
結束頁: 397
顯示於類別:期刊論文


文件中的檔案:

  1. 000289582400007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。